Wednesday 20 September 2017

Time Series Previsione Con Mobile Media


Previsione con analisi di serie temporali Cosa sta prevedendo previsione è un metodo che viene utilizzato ampiamente in analisi di serie temporali di prevedere una variabile di risposta, come ad esempio i profitti mensili, performance del titolo, o figure di disoccupazione, per un periodo di tempo specificato. Le previsioni si basano su modelli nei dati esistenti. Ad esempio, un responsabile del magazzino può modellare la quantità di prodotto su ordinazione per i prossimi 3 mesi, in base ai precedenti 12 mesi di ordini. È possibile utilizzare una varietà di metodi di serie storiche, come ad esempio l'analisi delle tendenze, la decomposizione, o un solo livellamento esponenziale, per modellare i modelli nei dati ed estrapolare quei modelli per il futuro. Scegliere un metodo di analisi se i modelli sono statici (costante nel tempo) o dinamico (cambiamento nel tempo), la natura della tendenza e componenti stagionali, e quanto anticipo si desidera prevedere. Prima di produrre previsioni, montare diversi modelli candidati ai dati per determinare quale modello è il più stabile e precisa. Le previsioni per l'analisi media mobile Il valore stimato al tempo t è la media mobile uncentered al tempo t -1. Le previsioni sono i valori stimati all'origine previsione. Se previsione di 10 unità di tempo avanti, il valore previsto per ogni volta che sarà il valore montato all'origine. Dati fino alle origini vengono utilizzati per il calcolo delle medie mobili. È possibile utilizzare il metodo lineare in movimento le medie calcolando medie mobili consecutivi. Il metodo medie lineari movimento è spesso utilizzato quando vi è una tendenza nei dati. In primo luogo, calcolare e memorizzare la media mobile della serie originale. Poi, calcolare e memorizzare la media mobile della colonna precedentemente memorizzato per ottenere una seconda media mobile. In previsione ingenuo, le previsioni per il tempo t è il valore dei dati al tempo t -1. Utilizzando lo spostamento procedura di media, con una media mobile di lunghezza dà la previsione ingenuo. Le previsioni per una singola analisi di livellamento esponenziale Il valore stimato al tempo t è il valore livellato al tempo t-1. Le previsioni sono il valore montato all'origine previsione. Se previsione di 10 unità di tempo avanti, il valore previsto per ogni volta che sarà il valore montato all'origine. Dati fino all'origine sono utilizzati per la levigatura. In previsione ingenuo, le previsioni per il tempo t è il valore dei dati al tempo t-1. Eseguire singolo livellamento esponenziale con un peso di uno a fare le previsioni ingenuo. Le previsioni per una doppia esponenziale analisi smoothing doppio livellamento esponenziale utilizza i componenti di livello e di tendenza per generare previsioni. Le previsioni per m periodi a venire da un punto al tempo t è L t t mT. dove L t è il livello e T t è la tendenza al tempo t. I dati fino al momento origine previsioni saranno utilizzati per la levigatura. Le previsioni per il metodo Winters metodo Winters utilizza il livello, di tendenza, e componenti stagionali per generare previsioni. Le previsioni per m periodi a venire da un punto al tempo t è: dove L t è il livello e T t è la tendenza al tempo t, moltiplicato per (o aggiunti a un modello additivo) della componente stagionale per lo stesso periodo dal l'anno scorso. Winters metodo utilizza i dati fino al momento origine previsioni per generare il forecasts. Introduction a ARIMA: modelli non stagionali ARIMA equazione (p, d, q) previsione: modelli ARIMA sono, in teoria, la classe più generale di modelli per la previsione di una serie temporale che può essere fatto per essere 8220stationary8221 dalla differenziazione (se necessario), forse in combinazione con trasformazioni non lineari come registrazione o sgonfiando (se necessario). Una variabile casuale che è una serie temporale è stazionaria se le sue proprietà statistiche sono tutte costanti nel tempo. Una serie stazionaria ha alcuna tendenza, le sue variazioni intorno la sua media hanno una ampiezza costante, e dimena in modo coerente. ossia suoi schemi temporali casuale breve termine sempre lo stesso aspetto in senso statistico. Quest'ultima condizione implica che le sue autocorrelazioni (correlazioni con i propri precedenti deviazioni dalla media) rimangono costanti nel tempo, o equivalentemente, che il suo spettro di potenza rimane costante nel tempo. Una variabile casuale di questa forma può essere visto (come al solito) come una combinazione di segnale e rumore, e il segnale (se risulta) potrebbe essere un modello di regressione medio veloce o lento, o oscillazione sinusoidale, o rapida alternanza di segno , e potrebbe anche avere una componente stagionale. Un modello ARIMA può essere visto come un 8220filter8221 che cerca di separare il segnale dal rumore, e il segnale viene poi estrapolato nel futuro per ottenere delle previsioni. L'equazione di previsione ARIMA per una serie temporale stazionaria è un lineare (cioè la regressione-tipo) equazione in cui i predittori sono costituiti da ritardi della variabile dipendente Andor ritardi degli errori di previsione. Cioè: Valore atteso di Y un andor costante una somma pesata di uno o più valori recenti di Y eo una somma pesata di uno o più valori recenti degli errori. Se i predittori sono costituiti solo di valori ritardati di Y. si tratta di un modello autoregressivo puro (8220self-regressed8221), che è solo un caso particolare di un modello di regressione e che potrebbe essere dotato di un software di regressione standard. Ad esempio, un autoregressiva del primo ordine (8220AR (1) 8221) modello per Y è un modello di regressione semplice in cui la variabile indipendente è semplicemente Y ritardato di un periodo (GAL (Y, 1) in Statgraphics o YLAG1 in RegressIt). Se alcuni dei fattori predittivi sono ritardi degli errori, un modello ARIMA NON è un modello di regressione lineare, perché non c'è modo di specificare period8217s 8220last error8221 come una variabile indipendente: gli errori devono essere calcolati su base periodica-to-periodo quando il modello è montato dati. Dal punto di vista tecnico, il problema con l'utilizzo errori ritardati come predittori è che le previsioni model8217s non sono funzioni lineari dei coefficienti. anche se sono funzioni lineari dei dati passati. Così, i coefficienti nei modelli ARIMA che includono errori ritardati devono essere stimati con metodi di ottimizzazione non lineare (8220hill-climbing8221) piuttosto che da solo risolvere un sistema di equazioni. L 'acronimo ARIMA sta per Auto-regressiva integrato media mobile. Ritardi della serie stationarized nell'equazione di previsione sono chiamati termini quotautoregressivequot, ritardi della errori di previsione sono chiamati quotmoving termini averagequot, e una serie di tempo che deve essere differenziata da effettuare stazionaria si dice che sia una versione quotintegratedquot di una serie stazionaria. modelli casuali di tendenza modelli di livellamento esponenziale casuale passeggiata e, modelli autoregressivi, e sono tutti i casi particolari di modelli ARIMA. Un modello ARIMA nonseasonal è classificato come (p, d, q) modello quot quotARIMA, dove: p è il numero di termini autoregressivi, d è il numero di differenze non stagionali necessari per stazionarietà, e q è il numero di errori di previsione ritardati in l'equazione di previsione. L'equazione di previsione è costruito come segue. In primo luogo, Sia Y il d ° differenza di Y. che significa: Si noti che la seconda differenza di Y (il caso d2) non è la differenza da 2 periodi fa. Piuttosto, è la prima differenza-of-the-prima differenza. che è l'analogo discreto di una derivata seconda, cioè l'accelerazione locale della serie piuttosto che la sua tendenza locale. In termini di y. l'equazione generale di previsione è: Qui i parametri medi in movimento (9528217s) sono definiti in modo tale che i loro segni sono negativi nell'equazione, seguendo la convenzione introdotta da Box e Jenkins. Alcuni autori e software (incluso il linguaggio di programmazione R) definirli in modo che abbiano segni più, invece. Quando i numeri reali sono inseriti nell'equazione, non c'è ambiguità, ma it8217s importante sapere quali convenzione il software utilizza quando si sta leggendo l'output. Spesso i parametri sono indicati lì da AR (1), AR (2), 8230, e MA (1), MA (2), 8230 ecc per identificare il modello ARIMA appropriato per Y. si inizia determinando l'ordine di differenziazione (d) che necessita stationarize serie e rimuovere le caratteristiche lordi di stagionalità, forse in combinazione con una trasformazione varianza stabilizzante come registrazione o sgonfiando. Se ci si ferma a questo punto e prevedere che la serie differenziata è costante, si è semplicemente montato un random walk o modello tendenza casuale. Tuttavia, la serie stationarized potrebbe ancora essere autocorrelato errori, il che suggerisce che un numero di termini AR (p 8805 1) Andor alcuni termini numero MA (q 8805 1) sono necessari anche nell'equazione di previsione. Il processo di determinazione dei valori di p, d, e q che sono meglio per una data serie di tempo saranno discussi nelle sezioni successive di note (i cui collegamenti sono nella parte superiore di questa pagina), ma in anteprima alcuni dei tipi di modelli ARIMA non stagionali che vengono comunemente riscontrato è riportata qui sotto. ARIMA modello autoregressivo (1,0,0) del primo ordine: se la serie è fermo e autocorrelato, forse può essere previsto come multiplo del proprio valore precedente, più una costante. L'equazione di previsione in questo caso è 8230which è Y regredito su se stessa ritardato di un periodo. Questo è un modello constant8221 8220ARIMA (1,0,0). Se la media di Y è zero, allora il termine costante non verrebbe inclusa. Se il coefficiente di pendenza 981 1 è positivo e meno di 1 su grandezza (che deve essere inferiore a 1 a grandezza se Y è fermo), il modello descrive significare-ritornando comportamento in cui il valore prossimi period8217s dovrebbe essere previsto per essere 981 1 volte lontano dalla media come questo period8217s valore. Se 981 1 è negativa, predice significare-ritornando comportamento con alternanza di segni, cioè si prevede anche che Y sarà al di sotto del prossimo periodo media se è al di sopra del periodo di dire questo. In un modello autoregressivo del secondo ordine (ARIMA (2,0,0)), ci sarebbe un termine Y t-2 sulla destra pure, e così via. A seconda dei segni e grandezze dei coefficienti, un (2,0,0) modello ARIMA poteva descrivere un sistema il cui reversione medio avviene in modo sinusoidale oscillante, come il moto di una massa su una molla che viene sottoposta a shock casuali . ARIMA (0,1,0) random walk: Se la serie Y non è fermo, il modello più semplice possibile è un modello casuale, che può essere considerato come un caso limite di un AR (1) modello in cui la autoregressivo coefficiente è uguale a 1, cioè una serie con infinitamente lenta reversione media. L'equazione pronostico per questo modello può essere scritto come: dove il termine costante è la variazione media del periodo a periodo (cioè lungo termine deriva) in Y. Questo modello può essere montato come un modello di regressione non intercetta in cui la prima differenza di Y è la variabile dipendente. Dal momento che include (solo) una differenza non stagionale e di un termine costante, è classificato come un quotARIMA (0,1,0) modello con constant. quot Il caso-roulant senza modello - drift sarebbe un ARIMA (0,1, 0) modello senza costante ARIMA (1,1,0) differenziata modello autoregressivo del primo ordine: Se gli errori di un modello random walk sono autocorrelati, forse il problema può essere risolto con l'aggiunta di un ritardo della variabile dipendente alla previsione equation - - cioè regredendo la prima differenza di Y su se stessa ritardato di un periodo. Ciò produrrebbe la seguente equazione previsione: che possono essere riorganizzate a Questo è un modello autoregressivo del primo ordine con un ordine di differenziazione non stagionale e di un termine costante - i. e. un (1,1,0) modello ARIMA. ARIMA (0,1,1) senza costante livellamento esponenziale semplice: Un'altra strategia per correggere gli errori autocorrelati in un modello random walk è suggerita dal semplice modello di livellamento esponenziale. Ricordiamo che per alcune serie di tempo non stazionaria (ad esempio quelle che presentano fluttuazioni rumorosi intorno a una media lentamente variabile), il modello random walk non esegue così come una media mobile di valori passati. In altre parole, invece di prendere l'osservazione più recente come la previsione della successiva osservazione, è preferibile utilizzare una media degli ultimi osservazioni per filtrare il rumore e più accuratamente stimare la media locale. Il semplice modello di livellamento esponenziale utilizza una media mobile esponenziale ponderata dei valori del passato per ottenere questo effetto. L'equazione pronostico per la semplice modello di livellamento esponenziale può essere scritto in un certo numero di forme matematicamente equivalenti. una delle quali è la cosiddetta forma correction8221 8220error, in cui la precedente previsione viene regolata nella direzione dell'errore fece: Perché e t-1 Y t-1 - 374 t-1 per definizione, questo può essere riscritta come : che è un ARIMA (0,1,1) - senza-costante equazione di previsione con 952 1 1 - 945. Ciò significa che è possibile montare un semplice livellamento esponenziale specificando come un modello ARIMA (0,1,1) senza costante, e il MA stimato (1) coefficiente corrisponde a 1-minus-alfa nella formula SES. Ricordiamo che nel modello SES, l'età media dei dati nelle previsioni 1-periodo-ahead è 1 945. senso che essi tenderanno a restare indietro tendenze o punti di svolta da circa 1 945 periodi. Ne consegue che l'età media dei dati nelle previsioni 1-periodo-prima di un ARIMA (0,1,1) - senza-costante modello è 1 (1-952 1). Così, per esempio, se 952 1 0.8, l'età media è 5. Come 952 1 avvicina 1, il ARIMA (0,1,1) - senza-costante modello diventa un media-molto-lungo termine in movimento, e come 952 1 si avvicina a 0 diventa un modello random walk-senza-drift. What8217s il modo migliore per correggere autocorrelazione: aggiunta termini AR o aggiungendo termini MA Nelle precedenti due modelli di cui sopra, il problema degli errori autocorrelati in un modello casuale è stato fissato in due modi diversi: aggiungendo un valore ritardato della serie differenziata l'equazione o l'aggiunta di un valore ritardato del l'errore di previsione. Quale approccio è meglio Una regola empirica per questa situazione, che sarà discusso più dettagliatamente in seguito, è che autocorrelazione positiva di solito è meglio trattata con l'aggiunta di un termine di AR al modello e negativo autocorrelazione di solito è meglio trattata con l'aggiunta di un MA termine. In serie business e tempo economica, autocorrelazione negativa si pone spesso come un artefatto di differenziazione. (In generale, differenziazione riduce autocorrelazione positiva e può anche provocare un interruttore da positivo a negativo autocorrelazione.) Quindi, il modello ARIMA (0,1,1), in cui la differenziazione è accompagnato da un termine MA, è più spesso utilizzato che un ARIMA (1,1,0) del modello. ARIMA (0,1,1) con costante semplice livellamento esponenziale con la crescita: Con l'implementazione del modello SES come un modello ARIMA, è in realtà guadagnare una certa flessibilità. Prima di tutto, il MA stimata (1) coefficiente è permesso di essere negativo. questo corrisponde ad un fattore di livellamento maggiore di 1 in un modello SES, che normalmente non è consentito dalla procedura model-fitting SES. In secondo luogo, si ha la possibilità di includere un termine costante nel modello ARIMA se lo si desidera, al fine di stimare un andamento medio diverso da zero. L'(0,1,1) modello ARIMA con costante ha l'equazione di previsione: Le previsioni di un periodo a venire da questo modello sono qualitativamente simili a quelle del modello SES, tranne che la traiettoria delle previsioni a lungo termine è in genere un pendenza riga (la cui pendenza è uguale a mu) anziché una linea orizzontale. ARIMA (0,2,1) o (0,2,2) senza costante livellamento esponenziale lineare: lineari modelli di livellamento esponenziale sono modelli ARIMA che utilizzano due differenze non stagionali in collegamento con termini MA. La seconda differenza di una serie Y non è semplicemente la differenza tra Y e si ritardato da due periodi, ma piuttosto è la prima differenza della prima --i. e differenza. il cambiamento-in-the-cambiamento di Y al periodo t. Così, la seconda differenza di Y al periodo t è uguale a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Una seconda differenza di una funzione discreta è analoga ad una derivata seconda di una funzione continua: misura la quotaccelerationquot o quotcurvaturequot in funzione in un dato punto nel tempo. L'(0,2,2) modello ARIMA senza costante prevede che la seconda differenza della serie è uguale a una funzione lineare delle ultime due errori di previsione: che può essere riorganizzato come: dove 952 1 e 952 2 sono il MA (1) e MA (2) coefficienti. Questo è un modello di livellamento esponenziale lineare generale. essenzialmente lo stesso modello di Holt8217s e Brown8217s modello è un caso speciale. Esso utilizza pesato esponenzialmente medie mobili stimare sia a livello locale e una tendenza locale nella serie. Le previsioni a lungo termine di questo modello convergono ad una retta la cui inclinazione dipende dalla tendenza media osservata verso la fine della serie. ARIMA (1,1,2) senza costante smorzata-trend lineare livellamento esponenziale. Questo modello è illustrato nelle slide di accompagnamento sui modelli ARIMA. Si estrapola la tendenza locale alla fine della serie, ma appiattisce fuori a orizzonti previsionali più lunghi per introdurre una nota di cautela, una pratica che ha supporto empirico. Vedi l'articolo sul quotWhy il Damped Trend worksquot da Gardner e McKenzie e l'articolo quotGolden Rulequot da Armstrong et al. per dettagli. In genere è consigliabile attenersi a modelli in cui almeno uno dei p e q non è maggiore di 1, vale a dire non cercare di adattarsi a un modello come ARIMA (2,1,2), in quanto questo rischia di portare a sovradattamento e le questioni che sono discussi in modo più dettagliato nelle note sulla struttura matematica dei modelli ARIMA quotcommon-factorquot. implementazione foglio di calcolo: modelli ARIMA come quelli sopra descritti sono facili da implementare su un foglio di calcolo. L'equazione previsione è semplicemente una equazione lineare che fa riferimento ai valori passati della serie temporale originale e valori passati degli errori. Così, è possibile impostare un foglio di calcolo di previsione ARIMA memorizzando i dati nella colonna A, la formula di previsione nella colonna B, e gli errori (previsioni di dati meno) nella colonna C. La formula di previsione in una cella tipica nella colonna B sarebbe semplicemente un'espressione lineare di riferimento ai valori nelle precedenti file di colonne a e C, moltiplicata per i coefficienti appropriati AR o MA memorizzati nelle celle altrove sul spreadsheet. In pratica la media mobile fornirà una buona stima della media della serie tempo se il media è costante o lentamente cambiando. Nel caso di una media costante, il più grande valore di m darà la migliore stima del mezzo sottostante. Un periodo di osservazione più lungo sarà mediare gli effetti della variabilità. Lo scopo di fornire una più piccola m è quello di permettere la previsione di rispondere ad un cambiamento nel processo sottostante. Per illustrare, proponiamo un insieme di dati che incorpora i cambiamenti nel mezzo di base della serie storica. La figura mostra la serie storica utilizzata per l'illustrazione insieme con la domanda media da cui è stata generata la serie. La media inizia come una costante a 10. Partendo tempo 21, aumenta di una unità in ciascun periodo fino a raggiungere il valore di 20 al momento 30. Allora diventa di nuovo costante. I dati vengono simulato aggiungendo alla media, un rumore casuale da una distribuzione normale con media nulla e deviazione standard 3. I risultati della simulazione sono arrotondati all'intero più vicino. La tabella mostra le osservazioni simulate utilizzati per l'esempio. Quando usiamo la tabella, dobbiamo ricordare che in un dato momento, solo i dati del passato sono noti. Le stime del parametro del modello, per tre diversi valori di m sono mostrati insieme con la media della serie storiche nella figura sottostante. La figura mostra la stima media mobile della media in ogni momento e senza la previsione. Le previsioni dovrebbero spostare le curve di media mobile a destra da punti. Una conclusione è immediatamente evidente dalla figura. Per tutte e tre le stime della media mobile è in ritardo rispetto l'andamento lineare, con il ritardo aumenta con m. Il ritardo è la distanza tra il modello e la stima della dimensione temporale. A causa del ritardo, la media mobile sottovaluta le osservazioni come la media è in aumento. La polarizzazione dello stimatore è la differenza in un momento specifico nel valore medio del modello e il valore medio previsto dalla media mobile. La polarizzazione quando aumenta la media è negativo. Per una media decrescente, la polarizzazione è positivo. Il ritardo nel tempo e la distorsione introdotta nella stima sono funzioni di m. Maggiore è il valore di m. maggiore è la grandezza di lag e polarizzazione. Per una serie sempre crescente con andamento a. i valori di ritardo e distorsione dello stimatore della media è data nelle equazioni seguenti. Le curve di esempio non corrispondono queste equazioni, perché il modello di esempio, non è in continuo aumento, piuttosto che inizia come una costante, modifiche a una tendenza e poi diventa di nuovo costante. Anche le curve di esempio sono influenzate dal rumore. La previsione media mobile di periodi nel futuro è rappresentato spostando le curve a destra. Il ritardo e pregiudizi aumentano proporzionalmente. Le equazioni di sotto indicano il ritardo e la polarizzazione di un periodi di previsione nel futuro rispetto ai parametri del modello. Di nuovo, queste formule sono per una serie temporale con un andamento lineare costante. Non dovremmo essere sorpresi di questo risultato. Lo stimatore media mobile è basata sull'ipotesi di una media costante, e l'esempio ha un andamento lineare nel mezzo durante una parte del periodo di studio. Poiché serie tempo reale raramente esattamente obbedire alle ipotesi di qualsiasi modello, dobbiamo essere preparati per tali risultati. Possiamo anche concludere dalla figura che la variabilità del rumore ha il più grande effetto per piccole m. La stima è molto più volatile per la media mobile 5 rispetto alla media mobile di 20. Abbiamo i desideri contrastanti per aumentare m per ridurre l'effetto della variabilità dovuta al rumore, e di diminuire m per rendere la previsione più sensibile alle variazioni in media. L'errore è la differenza tra i dati effettivi e il valore previsto. Se la serie temporale è veramente un valore costante il valore atteso dell'errore è zero e la varianza dell'errore è costituito da un termine che è una funzione di e un secondo termine che è la varianza del rumore,. Il primo termine è la varianza della media stimata con un campione di m osservazioni, assumendo i dati provengono da una popolazione con una media costante. Questo termine viene minimizzato rendendo m più grande possibile. Una grande m rende la previsione risponde ad un cambiamento nelle serie temporali sottostante. Per rendere la previsione sensibile ai cambiamenti, vogliamo M più piccolo possibile (1), ma questo aumenta la varianza dell'errore. previsione pratica richiede un valore intermedio. Previsione con Excel Il componente aggiuntivo Forecasting implementa le formule media mobile. L'esempio seguente mostra l'analisi fornita dal componente aggiuntivo per i dati di esempio nella colonna B. I primi 10 osservazioni sono indicizzati -9 attraverso 0. Rispetto alla tabella di cui sopra, gli indici di periodo sono spostati da -10. I primi dieci osservazioni forniscono i valori di avvio per la stima e vengono utilizzati per calcolare la media mobile per il periodo 0. Il MA (10) della colonna (C) mostra le medie mobili calcolate. La media mobile parametro m è nella cella C3. La parte anteriore (1) colonna (D) mostra una previsione per un periodo nel futuro. L'intervallo di previsione è in cella D3. Quando l'intervallo di tempo viene modificato in un numero maggiore i numeri nella colonna Fore sono spostati verso il basso. La colonna Err (1) (E) mostra la differenza tra l'osservazione e la previsione. Ad esempio, l'osservazione al tempo 1 è 6. Il valore previsto fatta dalla media mobile al tempo 0 è 11.1. L'errore quindi è -5.1. La deviazione standard e media deviazione media (MAD) sono calcolati in cellule E6 e E7, rispettivamente.

No comments:

Post a Comment